169 research outputs found

    Fall Risk Assessment Tools for Elderly Living in the Community: Can We Do Better?

    Get PDF
    Background Falls are a common, serious threat to the health and self-confidence of the elderly. Assessment of fall risk is an important aspect of effective fall prevention programs. Objectives and methods In order to test whether it is possible to outperform current prognostic tools for falls, we analyzed 1010 variables pertaining to mobility collected from 976 elderly subjects (InCHIANTI study). We trained and validated a data-driven model that issues probabilistic predictions about future falls. We benchmarked the model against other fall risk indicators: history of falls, gait speed, Short Physical Performance Battery (Guralnik et al. 1994), and the literature-based fall risk assessment tool FRAT-up (Cattelani et al. 2015). Parsimony in the number of variables included in a tool is often considered a proxy for ease of administration. We studied how constraints on the number of variables affect predictive accuracy. Results The proposed model and FRAT-up both attained the same discriminative ability; the area under the Receiver Operating Characteristic (ROC) curve (AUC) for multiple falls was 0.71. They outperformed the other risk scores, which reported AUCs for multiple falls between 0.64 and 0.65. Thus, it appears that both data-driven and literature-based approaches are better at estimating fall risk than commonly used fall risk indicators. The accuracy–parsimony analysis revealed that tools with a small number of predictors (~1-5) were suboptimal. Increasing the number of variables improved the predictive accuracy, reaching a plateau at ~20-30, which we can consider as the best trade-off between accuracy and parsimony. Obtaining the values of these ~20-30 variables does not compromise usability, since they are usually available in comprehensive geriatric assessments

    Quality Assessment and Morphological Analysis of Photoplethysmography in Daily Life

    Get PDF
    The photoplethysmographic (PPG) signal has been applied in various research fields, with promising results for its future clinical application. However, there are several sources of variability that, if not adequately controlled, can hamper its application in pervasive monitoring contexts. This study assessed and characterized the impact of several sources of variability, such as physical activity, age, sex, and health state on PPG signal quality and PPG waveform parameters (Rise Time, Pulse Amplitude, Pulse Time, Reflection Index, Delta T, and DiastolicAmplitude). We analyzed 31 24 h recordings by as many participants (19 healthy subjects and 12 oncological patients) with a wristband wearable device, selecting a set of PPG pulses labeled with three different quality levels. We implemented a Multinomial Logistic Regression (MLR) model to evaluate the impact of the aforementioned factors on PPG signal quality. We then extracted six parameters only on higher-quality PPG pulses and evaluated the influence of physical activity, age, sex, and health state on these parameters with Generalized Linear Mixed Effects Models (GLMM). We found that physical activity has a detrimental effect on PPG signal quality quality (94% of pulses with good quality when the subject is at rest vs. 9% during intense activity), and that health state affects the percentage of available PPG pulses of the best quality (at rest, 44% for healthy subjects vs. 13% for oncological patients). Most of the extracted parameters are influenced by physical activity and health state, while age significantly impacts two parameters related to arterial stiffness. These results can help expand the awareness that accurate, reliable information extracted from PPG signals can be reached by tackling and modeling different sources of inaccuracy

    A Wavelet-Based Approach to Fall Detection

    Get PDF
    Falls among older people are a widely documented public health problem. Automatic fall detection has recently gained huge importance because it could allow for the immediate communication of falls to medical assistance. The aim of this work is to present a novel wavelet-based approach to fall detection, focusing on the impact phase and using a dataset of real-world falls. Since recorded falls result in a non-stationary signal, a wavelet transform was chosen to examine fall patterns. The idea is to consider the average fall pattern as the “prototype fall”.In order to detect falls, every acceleration signal can be compared to this prototype through wavelet analysis. The similarity of the recorded signal with the prototype fall is a feature that can be used in order to determine the difference between falls and daily activities. The discriminative ability of this feature is evaluated on real-world data. It outperforms other features that are commonly used in fall detection studies, with an Area Under the Curve of 0.918. This result suggests that the proposed wavelet-based feature is promising and future studies could use this feature (in combination with others considering different fall phases) in order to improve the performance of fall detection algorithms

    Physical Activity Classification for Elderly People in Free-Living Conditions

    Get PDF
    Physical activity is strongly linked with mental and physical health in the elderly population and accurate monitoring of activities of daily living (ADLs) can help improve quality of life and well-being. This study presents and validates an inertial sensors-based physical activity classification system developed with older adults as the target population. The dataset was collected in free-living conditions without placing constraints on the way and order of performing ADLs. Four sensor locations (chest, lower back, wrist, and thigh) were explored to obtain the optimal number and combination of sensors by finding the best tradeoff between the system's performance and wearability. Several feature selection techniques were implemented on the feature set obtained from acceleration and angular velocity signals to classify four major ADLs (sitting, standing, walking, and lying). A support vector machine was used for the classification of the ADLs. The findings show the potential of different solutions (single sensor or multisensor) to correctly classify the ADLs of older people in free-living conditions. Considering a minimal set-up of a single sensor, the sensor worn at the L5 achieved the best performance. A two-sensor solution (L5 + thigh) achieved a better performance with respect to a single-sensor solution. By contrast, considering more than two sensors did not provide further improvements. Finally, we evaluated the computational cost of different solutions and it was shown that a feature selection step can reduce the computational cost of the system and increase the system performance in most cases. This can be helpful for real-time applications.<br/

    Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study

    Get PDF
    The popularity of using wearable inertial sensors for physical activity classification has dramatically increased in the last decade due to their versatility, low form factor, and low power requirements. Consequently, various systems have been developed to automatically classify daily life activities. However, the scope and implementation of such systems is limited to laboratory-based investigations. Furthermore, these systems are not directly comparable, due to the large diversity in their design (e.g., number of sensors, placement of sensors, data collection environments, data processing techniques, features set, classifiers, cross-validation methods). Hence, the aim of this study is to propose a fair and unbiased benchmark for the field-based validation of three existing systems, highlighting the gap between laboratory and real-life conditions. For this purpose, three representative state-of-the-art systems are chosen and implemented to classify the physical activities of twenty older subjects (76.4 \ub1 5.6 years). The performance in classifying four basic activities of daily life (sitting, standing, walking, and lying) is analyzed in controlled and free living conditions. To observe the performance of laboratory-based systems in field-based conditions, we trained the activity classification systems using data recorded in a laboratory environment and tested them in real-life conditions in the field. The findings show that the performance of all systems trained with data in the laboratory setting highly deteriorates when tested in real-life conditions, thus highlighting the need to train and test the classification systems in the real-life setting. Moreover, we tested the sensitivity of chosen systems to window size (from 1 s to 10 s) suggesting that overall accuracy decreases with increasing window size. Finally, to evaluate the impact of the number of sensors on the performance, chosen systems are modified considering only the sensing unit worn at the lower back. The results, similarly to the multi-sensor setup, indicate substantial degradation of the performance when laboratory-trained systems are tested in the real-life setting. This degradation is higher than in the multi-sensor setup. Still, the performance provided by the single-sensor approach, when trained and tested with real data, can be acceptable (with an accuracy above 80%)

    Classical machine learning versus deep learning for the older adults free-living activity classification

    Get PDF
    Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical machine learning and deep learning approaches to classify the most common ADLs: walking, sitting, standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living environment from older adults living independently. The findings suggest that both approaches can accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support Vector Machines combined with ReliefF feature selection performed equally well, achieving around 97% F-score in profiling ADLs

    Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization

    Get PDF
    Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored. We leveraged on our experience from a large multi-centric study (Mobilise-D) to provide guidelines that can prove useful to access, understand, and re-use the data that will be made available from the study. These guidelines highlight the encountered challenges and the adopted solutions with the final aim of supporting standardization and integration of data in other studies and, in turn, to increase and facilitate comparison of data recorded in the scientific community. We also provide samples of standardized data, so that both the structure of the data and the procedure can be easily understood and reproduced

    Development and validation of a novel risk score for primary percutaneous coronary intervention for ST elevation myocardial infarction

    Get PDF
    Background Primary percutaneous coronary intervention (PPCI) is the default treatment for patients with ST elevation myocardial infarction (STEMI) and carries a higher risk of adverse outcomes when compared with elective and urgent PCI. Conventional PCI risk scores tend to be complex and may underestimate the risk associated with PPCI due to under-representation of patients with STEMI in their datasets. This study aimed to develop a simple, practical and contemporary risk model to provide risk stratification in PPCI. Methods Demographic, clinical and outcome data were collected for all patients who underwent PPCI between January 2009 and October 2013 at the Northern General Hospital, Sheffield. Multiple regression analysis was used to identify independent predictors of mortality and to construct a risk model. This model was then separately validated on an internal and external dataset. Results The derivation cohort included 2870 patients with a 30-day mortality of 5.1% (145 patients). Only four variables were required to predict 30-day mortality: age [OR:1.047, 95% CI:1.031–1.063], call-to-balloon (CTB) time [OR:1.829, 95% CI:1.198–2.791], cardiogenic shock [OR:13.886, 95% CI:8.284–23.275] and congestive heart failure [OR:3.169, 95% CI:1.420–7.072]. Internal validation was performed in 693 patients and external validation in 660 patients undergoing PPCI. Our model showed excellent discrimination on ROC-curve analysis (C-Stat = 0.87 internal and 0.86, external), and excellent calibration on Hosmer-Lemeshow testing (p = 0.37 internal, 0.55 external). Conclusions We have developed a bedside risk model which can predict 30-day mortality after PPCI using only four variables: age, CTB time, congestive heart failure and shock

    Whole Lung Irradiation after High-Dose Busulfan/Melphalan in Ewing Sarcoma with Lung Metastases: An Italian Sarcoma Group and Associazione Italiana Ematologia Oncologia Pediatrica Joint Study

    Get PDF
    SIMPLE SUMMARY: The lung is the most frequent site of metastasis in Ewing sarcoma, the second most common bone cancer affecting children, adolescents and young adults. The five-year overall survival of patients with isolated lung metastasis is approximately 50% after multimodal treatments including chemotherapy, surgery and radiotherapy. This retrospective study aimed to investigate the feasibility and the predictors of survival in 68 Ewing sarcoma patients with lung metastases who received high-dose chemotherapy with busulfan and melphalan, followed by reduced dose whole-lung irradiation, as part of two prospective and consecutive treatment protocols. This combined treatment strategy is feasible and might contribute to the disease control in lung metastatic Ewing sarcoma with responsive disease. Furthermore, the results of this study provide support to explore the treatment stratification for lung metastatic Ewing sarcoma based on the histological response of the primary tumor. ABSTRACT: Purpose: To analyze toxicity and outcome predictors in Ewing sarcoma patients with lung metastases treated with busulfan and melphalan (BU-MEL) followed by whole-lung irradiation (WLI). Methods: This retrospective study included 68 lung metastatic Ewing Sarcoma patients who underwent WLI after BU-MEL with autologous stem cell transplantation, as part of two prospective and consecutive treatment protocols. WLI 12 Gy for <14 years old and 15 Gy for ≥14 years old patients were applied at least eight weeks after BU-MEL. Toxicity, overall survival (OS), event-free survival (EFS) and pulmonary relapse-free survival (PRFS) were estimated and analyzed. Results: After WLI, grade 1–2 and grade 3 clinical toxicity was reported in 16.2% and 5.9% patients, respectively. The five-year OS, EFS and PRFS with 95% confidence interval (CI) were 69.8% (57.1–79.3), 61.2% (48.4–71.7) and 70.5% (56.3–80.8), respectively. Patients with good histological necrosis of the primary tumor after neoadjuvant chemotherapy showed a significant decreased risk of pulmonary relapse or death compared to patients with poor histological necrosis. Conclusions: WLI at recommended doses and time interval after BU-MEL is feasible and might contribute to the disease control in Ewing sarcoma with lung metastases and responsive disease. Further studies are needed to explore the treatment stratification based on the histological response of the primary tumor

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape
    • …
    corecore